# Import data types from pyspark.sql.types import * sc = spark.sparkContext # Load a text file and convert each line to a Row. lines = sc.textFile("examples/src/main/resources/people.txt") parts = lines.map(lambda l: l.split(",")) # Each line is converted to a tuple. people = parts.map(lambda p: (p[0], p[1].strip())) # The schema is encoded in a string. schemaString = "name age" fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split()] schema = StructType(fields) # Apply the schema to the RDD. schemaPeople = spark.createDataFrame(people, schema) # Creates a temporary view using the DataFrame schemaPeople.createOrReplaceTempView("people") # SQL can be run over DataFrames that have been registered as a table. results = spark.sql("SELECT name FROM people") results.show() # +-------+ # | name| # +-------+ # |Michael| # | Andy| # | Justin| # +-------+
"Spark, Hadoop, Hive, and Programming Interview Questions" by Venkateswarlu Chennareddy
Wednesday, April 5, 2017
Spark SQL with Schema
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment