Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.
Implement the LRUCache class:
LRUCache(int capacity)Initialize the LRU cache with positive sizecapacity.int get(int key)Return the value of thekeyif the key exists, otherwise return-1.void put(int key, int value)Update the value of thekeyif thekeyexists. Otherwise, add thekey-valuepair to the cache. If the number of keys exceeds thecapacityfrom this operation, evict the least recently used key.
The functions get and put must each run in O(1) average time complexity.
Example 1:
Input ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]] Output [null, null, null, 1, null, -1, null, -1, 3, 4] Explanation LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // cache is {1=1} lRUCache.put(2, 2); // cache is {1=1, 2=2} lRUCache.get(1); // return 1 lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3} lRUCache.get(2); // returns -1 (not found) lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3} lRUCache.get(1); // return -1 (not found) lRUCache.get(3); // return 3 lRUCache.get(4); // return 4
Solution#1 : Built-In
class LRUCache {
int capacity;
LinkedHashMap<Integer, Integer> cache;
public LRUCache(int capacity) {
this.capacity = capacity;
// accessOrder = true → makes it access-order, so the least recently used entry naturally moves to the front for easy eviction.
cache = new LinkedHashMap<Integer, Integer>(capacity, 0.75f, true); // initial capacity, loadFactor, accessOrder
}
public int get(int key) {
return cache.getOrDefault(key, -1);
}
public void put(int key, int value) {
cache.put(key, value);
if(cache.size() > capacity){
Iterator<Integer> it = cache.keySet().iterator();
cache.remove(it.next()); // remove least recently used
}
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/
Solution#2 : Using Doubly LinkedList and Hash Map
class ListNode {
int key;
int val;
ListNode next;
ListNode prev;
public ListNode(int key, int val) {
this.key = key;
this.val = val;
}
}
class LRUCache {
int capacity;
Map<Integer, ListNode> cache;
ListNode head;
ListNode tail;
public LRUCache(int capacity) {
this.capacity = capacity;
cache = new HashMap<>();
head = new ListNode(-1, -1);
tail = new ListNode(-1, -1);
head.next = tail;
tail.prev = head;
}
public int get(int key) {
if (!cache.containsKey(key)) {
return -1;
}
ListNode node = cache.get(key);
remove(node);
addToTail(node);
return node.val;
}
public void put(int key, int value) {
if (cache.containsKey(key)) {
ListNode oldNode = cache.get(key);
remove(oldNode);
}
ListNode node = new ListNode(key, value);
cache.put(key, node);
addToTail(node);
if (cache.size() > capacity) {
ListNode nodeToDelete = head.next;
remove(nodeToDelete);
cache.remove(nodeToDelete.key);
}
}
public void addToTail(ListNode node) {
ListNode previousEnd = tail.prev;
previousEnd.next = node;
node.prev = previousEnd;
node.next = tail;
tail.prev = node;
}
public void remove(ListNode node) {
node.prev.next = node.next;
node.next.prev = node.prev;
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/
No comments:
Post a Comment