Wednesday, March 24, 2021

Number of Islands

Given an m x n 2D binary grid grid which represents a map of '1's (land) and '0's (water), return the number of islands.

An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.

 

Example 1:

Input: grid = [
  ["1","1","1","1","0"],
  ["1","1","0","1","0"],
  ["1","1","0","0","0"],
  ["0","0","0","0","0"]
]
Output: 1

Example 2:

Input: grid = [
  ["1","1","0","0","0"],
  ["1","1","0","0","0"],
  ["0","0","1","0","0"],
  ["0","0","0","1","1"]
]
Output: 3

Approach DFS [Accepted]

Intuition

Treat the 2d grid map as an undirected graph and there is an edge between two horizontally or vertically adjacent nodes of value '1'.

Algorithm

Linear scan the 2d grid map, if a node contains a '1', then it is a root node that triggers a Depth First Search. During DFS, every visited node should be set as '0' to mark as visited node. Count the number of root nodes that trigger DFS, this number would be the number of islands since each DFS starting at some root identifies an island.

class Solution {
  void dfs(char[][] grid, int r, int c) {
    int nr = grid.length;
    int nc = grid[0].length;
    if (r < 0 || c < 0 || r >= nr || c >= nc || grid[r][c] == '0') {
      return;
    }
    grid[r][c] = '0';
    dfs(grid, r - 1, c);
    dfs(grid, r + 1, c);
    dfs(grid, r, c - 1);
    dfs(grid, r, c + 1);
  }

  public int numIslands(char[][] grid) {
    if (grid == null || grid.length == 0) {
      return 0;
    }
    int nr = grid.length;
    int nc = grid[0].length;
    int num_islands = 0;
    for (int r = 0; r < nr; ++r) {
      for (int c = 0; c < nc; ++c) {
        if (grid[r][c] == '1') {
          ++num_islands;
          dfs(grid, r, c);
        }
      }
    }
    return num_islands;
  }
}

No comments:

Post a Comment